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This paper presents a robust control design methodology for systems

with probabilistic parametric uncertainty. Control design is carried out by

solving a reliability-based multi-objective optimization problem where the

probability of violating design requirements is minimized. Simultaneously,

failure domains are optimally enlarged to enable global improvements in

the closed-loop performance. To enable an efficient numerical implementa-

tion, a hybrid approach for estimating reliability metrics is developed. This

approach, which integrates deterministic sampling and asymptotic approx-

imations, greatly reduces the numerical burden associated with complex

probabilistic computations without compromising the accuracy of the re-

sults. Examples using output-feedback and full-state feedback with state

estimation are used to demonstrate the ideas proposed.

I. Introduction

Achieving balance between stability and performance in the presence of uncertainties is

one of the fundamental challenges faced by control engineers. Trade-offs must be made to
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reach acceptable levels of stability and performance with adequate robustness to parameter

uncertainty. These trade-offs are explicitly linked to the control engineer’s choice of uncer-

tainty model as well as how that model is exploited in the synthesis process. Usually, the

assumed uncertainty model has a profound impact on the performance robustness of the

closed-loop system.

Several uncertainty models, such as norm-bounded perturbations, interval analysis, fuzzy

sets and probabilistic methods1,2 are typically used. The most commonly used robust con-

trol methods3 are µ-synthesis and H∞. In these methods, uncertainty is modeled with

norm-bounded complex perturbations of arbitrary structure about a nominal plant. This

treatment is used primarily because it leads to a tractable set of sufficient conditions for

robust stability, making the approach computationally efficient. These methods are based

on the most pessimistic value of performance among the possible ones, usually referred to

as ‘worst-case‘. This worst-case performance is usually realized only by a single member

of the uncertain model set and by a particular input signal. No information is provided

regarding the likelihood that this worst-case will ever occur in practice. In addition, the

intrinsic mathematical requirements of the approach usually lead to conservative models of

uncertainty, over-conservative designs and complicated compensators.

Probabilistic uncertainty not only defines a set of plants where the actual dynamic system

is assumed to reside but also associates a weight, i.e., the value of the probability density

function, to each member of the set. In contrast to conventional robust control methods,

this ‘additional dimension’ allows the pursuit of robustly optimal solutions in the proba-

bilistic sense. For instance, reliability-based design searches for solutions that minimize the

probability of violating design requirements prescribed in terms of inequality constraints.

Hence, reliability-based control design searches for the compensator that places as much

probability as possible within the region where the design requirements are satisfied. Notice

that this allows the search for the compensator with the best robustness for a given control

structure, e.g. the most robust PID controller, even though the violation of some the design

requirements for some of the plants in the uncertainty set is unavoidable.

Synthesis approaches based on random searches4–7 and stochastic gradient algorithms8,9

have been applied to probabilistic robust control. In these studies, random sampling is the

primary tool for assessing and pursuing acceptable levels of robustness in the control solution.

On the other hand, asymptotic approximations10–12 for the estimation of failure probabilities

have been only used as a control analysis tool. This paper integrates these numerical tools.
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The main contributions of this paper are as follows:

1. The use of shapeable failure domains within the reliability formulation. This allows

the concentration of the random outcome about regions where an improved controlled

performance is attained.

2. The formulation of a unified framework where reliability metrics for random variables

and processes are integrated.

3. The integrated use of deterministic sampling and asymptotic approximations in a hy-

brid approach. This approach (i) reduces the computational complexity of the syn-

thesis algorithm without compromising the accuracy of the results, (ii) eliminates the

random character of the estimation, and (iii) eliminates the high computational de-

mands associated with the estimation of small failure probabilities via Monte Carlo

sampling. These improvements mitigate the high computational demands of existing

design strategies.

This paper is organized as follows. Section II presents basic concepts related with control and

probabilistic uncertainty. Section III introduces the reliability metrics for random variables

and processes to be used throughout the the paper. Realizations to stability, time- and

frequency-dependent performance metrics are provided therein. Section IV presents the

hybrid approach used for the estimation of the reliability metrics previously introduced.

The reliability-based control synthesis procedure is presented in Section V, including robust

performance considerations and the synthesis algorithm. Two examples are presented in

Section VI, where a satellite’s attitude control problem and the disturbance rejection in a

flexible beam are used to demonstrate the method. Finally, some conclusions are stated in

Section VII.

II. System Dynamics

Let p be a vector of random variables used to model the uncertain parameters of the

system. In this study, p is prescribed a priori by the joint probability density function

(PDF) fp(p) or equivalently by the cumulative distribution function (CDF) Fp(p)a. The set

of values that p could take, called the support of p, will be denoted as ∆p.

aIn these expressions, the subscript refers to the symbol used for the random variable while the value in
parenthesis refers to a particular realization.
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Consider the probabilistic model M(p) of a Linear Time Invariant (LTI) system, where

the dependence of the model on the uncertain parameters could be non-linear. The reader

must notice however, that the developments presented herein do not require the system to

be LTI. The propagation of ∆p through M leads to a set of uncertain plant models in which

the physical system is assumed to reside. The probability of occurrence of a plant within

this set is fully determined by M and p. In a transfer function representation, we will refer

to G(p) as the uncertain plant and to K(k) as the compensator, where k is the vector of

design parameters to be determined. Alternatively, a state space realization of M(p) leads

to

ẋ = A(p)x + B(p)u + F(p)z (1)

y = C(p)x + D(p)u + E(p)v (2)

where x is the state, u is the control, z is process noise, y is the system output and v is

sensor noise. The noise signals are commonly modeled as delta correlated Gaussian white

noises satisfying E[z̃] = 0 and E[z̃(t)z̃T (t + τ)] = Sδ(τ), where z̃ = [zT ,vT ]T and S is a

constant spectral density matrix. In what follows, the explicit dependence on p is omitted

while D is assumed to be zero.

As a result of uncertainty, important properties used in control design do not hold due

to the offset between the deterministic mathematical model and the actual dynamic system.

The effects of parametric uncertainty on the Separation Principle are considered next. For

the full-state feedback law u = −Gx̂ and a full-order observer with gain L based on the

expected plant E[M(p)] (any other deterministic plant such as M(E[p]) could be used

instead), the closed-loop dynamics is given by

˙̃x = Ãx̃ + B̃z̃ (3)

ỹ = C̃x̃ + Ẽz̃ (4)

Ã =


A−BG BG

A− E[A] + (E[B]−B)G

+L(E[C]−C)
(B− E[B])G + E[A]− LE[C]


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B̃ =

 F 0

F −LE


where x̃ = [xT , eT ]T is the augmented state vector, e = x− x̂ is the estimation error, x̂ is the

estimation of x, C̃ = [CT |0T ]T and Ẽ = [0T |ET ]T . The vector k is formed by the feedback

gain G and the observer gain L. Notice that the Separation Principle holds, i.e. Ã is upper

triangular, if the deterministic plant used to generate the observer matches exactly the actual

dynamic system. Uncertainty in the plant makes the Separation Principle unattainable. In

addition, the random closed-loop poles do not occur at the locations selected for the full-state

feedback, i.e. poles of the Ã1,1 subsystem, nor at the locations for the full-order observer,

i.e. poles of the Ã2,2 subsystem.

III. Reliability-Based Metrics

The propagation of a fixed set of parameters of the plant through conventional control

analysis tools leads to set of scalar quantities, e.g. closed loop poles, and a set of fields, e.g.

step responses and Bode plots. The propagation of probabilistic uncertainty through the

same tools leads to random variables, e.g. random closed-loop poles, and random processes,

e.g. the step responses become random processes parameterized by time and the Bode plots

become random processes parameterized by frequency. In this section we first introduce

reliability metrics for random variables and processes. Such metrics will be used to quantify

the violation of the design requirements. Specific realizations corresponding to stability, time

and frequency requirements are then provided. In general, we will use x and x(h) to denote

a random variable and a random process dependent on p through the plant model. For the

random process x(h), h refers to an arbitrary parameter such as time or frequency.

A. Random Variables

We start by introducing the concept of probability of failure. Let x(p) be the random variable

of interest and x ≤ x be a design requirement. This event will be referred to as failure. The

corresponding failure set is given by F = {x | x ∈ (−∞, x]}, where the failure envelope x is a

deterministic quantity prescribed in advance. The admissible domain, namely A = {x | x ∈
(x,∞)}, is the complement of the failure domain. The same type of discrimination can be

done in the parameter space p by using x(p). The function g(p, x) = x(p) − x, called the

5 of 30



limit state function, divides the parameter space in two parts, the domain leading to A, i.e.

g(p, x) > 0, and the domain leading to F , i.e. g(p, x) ≤ 0. Hence, F results from mapping

the set {p ∈ ∆p | g(p, x) ≤ 0} through x(p). In this case, the probability of failure Pf is

given by

Pf = P[x ≤ x] =

∫
x≤x

fx(x)dx =

∫
g≤0

fp(p)dp (5)

Similar expressions can be derived if the design requirement is x ≥ x. A reliability metric

for x in which constraints from below and above are present is given by

rx(x, x)
∆
= rx(x) + rx(x) (6)

where

rx(x)
∆
= P[x < x] = Fx(x) (7)

rx(x)
∆
= P[x > x] = 1− Fx(x) (8)

Notice that rx(x) is equivalent to Equation (5). We will refer to x and x as the envelopes

of the failure domain F = {x | x ∈ (−∞, x] ∪ [x,∞)}. Notice that the under-bar and

the over-bar refer to the bound from below and the bound from above of the admissible

domain A = {x | x ∈ (x, x)}. This convention will be used for the reminder of the paper.

Notice that the mapping of the corresponding limit state function through x(p) leads to the

failure envelope(s). Hence, there is a direct correspondence between F and g. A sketch with

relevant information is provided in Figure 1.

B. Random Processes

The random process x(h) can be considered as the parameterization of a random variable

by the deterministic quantity h. The random process x(h) is specified by the set of CDFs13

Fx(h)(x, h). For instance, the system output y(t) is prescribed by Fy(t)(y, t). The evaluation

of the process at a particular h value, say hi, leads to a random variable prescribed by

Fx(x) = Fx(h)(x, hi). In general, the support and the percentiles of x(h) depend on h.
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Figure 1. Sketch on the reliability metric for x.

In this context, a reliability metric for x(h) is cast as follows

rx(h) (x(h), x(h))
∆
= rx(h)(x(h)) + rx(h)(x(h)) (9)

where

rx(h)(x(h))
∆
=

∫ h2

h1

P[x(h) < x(h)]dh =

∫ h2

h1

Fx(h)(x(h), h)dh (10)

rx(h)(x(h))
∆
=

∫ h4

h3

P[x(h) > x(h)]dh =

∫ h4

h3

1− Fx(h)(x(h), h)dh (11)

are the costs of violating the constraints x(h) ≤ x(h) and x(h) ≥ x(h) respectively. The

failure envelope functions, namely x(h) and x(h), are deterministic functions that delimit

the failure domain F = {(x, h) | (x(h) ≤ x(h) ∀h ∈ [h1, h2]) ∪ (x(h) ≥ x(h) ∀h ∈ [h3, h4])}.
Notice that the admissible domain A is bounded by x(h) from below and by x(h) from above.

The reader shall realize that Equation (9) is a natural extension of Equation (6). A sketch

with some of the pertinent metrics is provided in Figure 2. In the top plot, the 1, 25, 75
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and 99 percentilesb are shown along with the linear failure envelopes x(h) and x(h). In the

bottom plot, the integrands of Equations (10-11) corresponding to the configuration in the

top plot are shown. Notice that if the process is contained within the set A the reliability

Figure 2. Sketch on the reliability metric for x(h).

metric rx(h) is zero, meaning that the inequality constraints are satisfied for all parameter

values in ∆p.

C. Realizations

1. Robust Stability

A LTI system is robustly stable if all its poles are in the left hand side of the complex plane

for all possible values of the random parameters. A reliability assessment of stability is given

by

P

[
v⋃

i=1

(<[si] > 0)

]
= ε

bRecall that the m percentile, given by the x values satisfying Fx(h)(x, h) = m/100, defines a line under
which m% of the probability lies. These lines allow us the visualize the h dependence of the PDF.
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where si with i = 1, 2, . . . v is a random pole, <[·] is the real part operator and ε is the

resulting probability of instability. Robust stability is attained if ε = 0. Stability can also

be cast via

λ
∆
= max{<[s1],<[s2], . . . ,<[sv]} (12)

In terms of λ, the probability of instability is given by rλ(0). Robust stability is attained if

rλ(0) = 0.

Several comments are now pertinent. Reaching robust stability may not be feasible for

the given support ∆p (even though it is bounded) and the assumed control structure K(k).

Notice also that the acceptance of a small non-zero probability of instability could be desir-

able from the performance point of view. For instance, by allowing the right low-probability

tail of fλ(λ) to lie on the right hand side of the complex plane significant enhancements

in the performance of the plants associated with the high probability portions of the PDF

can be attained. Rather than advocating for the acceptance of the risk that this practice

implies, we would like to highlight that by allowing small values of ε, the trade-off between

robustness and performance can be quantified.

2. Time-Domain

Quite frequently, performance requirements are prescribed in terms of time-domain specifi-

cations. The propagation of fp(p) leads to random processes for the time responses. Denote

with x(t) an arbitrary random process with CDF Fx(t)(x, t). Such process is parameterized

by time t and the compensator design variable k. The dependence of x(t) on k has been

omitted for the sake of simplifying the notation. Reliability metrics for relevant processes

can be cast using Equation (9). For instance, while settling time and overshoot require-

ments are integrated using ry(t)(y(t), y(t)), the control saturation requirement |u| < U leads

to ru(t)(−U,U).

A reliability metric for assessing the effects of noise on the uncertain plant is formulated

next. The state covariance matrix, defined as Q(t) = E[x̃(t)x̃T (t)], is given by the solution

to the covariance equation

Q̇ = ÃQ + QÃT + B̃SB̃T (13)

subject to Q(0) = Q0. The output covariance, defined as Y(t) = E[ỹ(t)ỹT (t)], reaches the
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steady-state Root Mean Square (RMS) value

ỹRMS = lim
t→∞

(
diag

[
C̃Q(t)C̃T

])1/2

(14)

Notice that uncertainty in p makes ỹRMS a random vector. If yRMS is a component of ỹRMS,

a reliability metric that penalizes the violation yRMS > yRMS is given by ryRMS(yRMS).

3. Frequency-Domain

The propagation of fp(p) to the frequency domain leads to random processes of the form

x(ω), fully prescribed by Fx(ω)(x, ω). Here, x(ω) is any real frequency dependent metric

of the feedback loop, e.g. Bode magnitude. This random process is parameterized by the

frequency ω and the design variable k. A reliability metric for x(ω) is rx(ω)(x(ω), x(ω)). For

instance, conventional control requirements14 for disturbance rejection, noise attenuation

and reference tracking can be cast in terms of the loop transfer function. In terms of the

loop gain, namely q(ω) = |GK|, rq(ω)(1) is a metric for low frequency requirements while

rq(ω)(q(ω)) with q(ω) having a proper roll off, is the metric for high frequency requirements.

IV. Numerical Estimation

In general, reliability metrics cannot be evaluated exactly since they involve the eval-

uation of complicated integrals, usually multi-dimensional, over complex domains. In this

paper, reliability metrics are estimated using a hybrid approach which combines sampling

and asymptotic approximations. Such an approach is based on the estimation of failure prob-

abilities for the random variable. The estimation of failure probabilities for x via sampling

is given by

Pf ≈
n∑

i=1

I(xi ∈ F)

n
(15)

where I(·) is a binary indicator function that gives one if its argument is true and zero

otherwise. The subscript in the above expression refers to samples of the dependent random

variable x. An equivalent expression, where the limit state function is evaluated at the

sample values of p, can also be used. Usually, Monte-Carlo-Sampling (MCS)4–6,15 is used to

generate the required samples.
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A. Hammersley-Sequence-Sampling (HSS)

HSS generates representative deterministic samples of fp(p). The error of approximating

an integral by a finite sample of the integrand, e.g. Equation (15) instead of Equation

(5), depends on the uniformity of the points used to generate the samples rather than on

their randomness. This has motivated the development of deterministic sampling techniques

such as HSS, where the distribution of points is optimized. The n Hammersley samples

are generated by transforming the n Hammersley points mi with i = 1, 2, . . . n through the

inverse CDF of the uncertain parameter

pi = F−1
p (mi) (16)

The Hammersley points can be generated16 easily. HSS requires far fewer samples17 than

conventional MCS for a given confidence level. Improvements in the convergence rate of the

estimated first two order moments by a factor of three to one hundred18 have been reported.

In addition, if HSS is used to generate the samples for Equation (15) the estimated value

of the failure probability is deterministic. In contrast, MCS leads to a random value for

Pf unless an infinite number of samples is used. This is especially noticeable if n is small.

The random character of the estimation can only be mitigated by increasing the number

of samples, which incidentally increases the computational demands of algorithms based on

MCS. Therefore, HSS not only leads to more accurate estimations than MCS for a given

number of samples but also eliminates the random character of the results.

Figure 3 shows a comparison between HSS and MCS. In the top, n = 200 points on the

unit hypercube are shown. In the bottom, the corresponding samples for fp(p) = fa(a)fb(b),

where fa(a) = N(0, 1) and fb(b) = B(3, 2) with ∆b = [0, 1] are displayed. Here, N and B

denote a Gaussian and a Beta distribution. Substantial differences in the uniformity of the

points and in the clustering of the samples are observed.

B. First-Order-Reliability-Method (FORM)

FORM11 uses an asymptotic approximation for the estimation of failure probabilities. In

the process, p is transformed into the standard normal uncorrelated space q. If p = T(q) =
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Figure 3. Points and samples via MCS and HSS.

F−1
p (Fq(q)), Equation (5) is equivalent to

Pf =

∫
g(T(q))≤0

fq(q)dq

FORM approximates the domain g (T(q)) ≤ 0, by a half-space fitted to the true domain at

the point of maximum probability density. This approximation leads to

Pf ≈ Φ(−‖q∗‖) (17)

where q∗, called the Most Probable Point (MPP), is given by the solution to the constrained

optimization problem q∗ = argi‖q‖, g(T(q∗)) = 0. In this expression, Φ refers to the CDF

of a standard normal random variable. Notice that the rotational symmetry of fq(q) leads

to the one-dimensional approximation in Equation (17). The MPP does not exist when the

probability of failure is zero or one since the equality constraint g(T(q∗)) = 0 cannot be

satisfied. Even though FORM is extensively used in structural engineering, its application

to controls has been limited to stability10 analysis. The use of FORM to estimate failure

probabilities related to λ might lead to non-smooth limit state functions. This occurs when

crossings between any pair of limit state functions corresponding to the system poles take

place.
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C. Hybrid Approach

Sampling based techniques can readily be used to estimate probabilities of failure using

Equation (15). However, high computational demands in the evaluation of xi = x(pi) can

preclude their practicality especially when Pf ≈ 0. Examples of this can be easily foundc.

On the other hand, methods based on asymptotic approximations, such as FORM, provide

good approximations when Pf is small. This is clear since for failure probabilities away

from zero and one, the slow decrease in Fq(q) near the MPP and the geometrical difference

between the true limit state function and its linear approximation contribute a bigger error

to the FORM approximation.

In this paper, a hybrid approach which combines HSS and FORM is used to estimate

probabilities of failure. In order to identify the numerical tool that best suits the task at

hand, a coarse and computationally-efficient estimation of Pf is first generated using HSS.

Such estimation is then compared with a reference, namely the reference failure probability

ρ, a user-defined value set in advance. The comparison between the coarse estimate and ρ is

used to determine if either FORM or HSS are used to generate the more accurate estimation.

Assume that two sets of Hammersley samples of fp(p) are available. One set has n1 samples

and the other one has n2 samples, where n2 � n1. For a given failure domain F and a given

reference failure probability ρ, proceed as follows

1. Estimate the Pf using Equation(15) and the set of n1 samples.

2. Recalculate Pf as follows. If the estimated value is greater than ρ use Equation (15)

with the set of n2 samples. If the estimated value is less than ρ use FORM.

The refinement performed in Step 2 might not always be necessary. Situations in which

this is the case are provided next. Since reliability metrics for random processes are heavily

dependent on the larger values of the probabilities of failure that compose them, (see the bot-

tom plot of Figure 2), refining the estimation of the relatively small values is inconsequential.

Furthermore, if the reliability metrics are used to calculate the cost function of an optimiza-

tion problem, more accurate estimations are not needed when the assessment resulting from

using the coarse estimate of Step 1 denotes a poor control design, e.g. rλ(0) � 0.

cWang et al.5,15 make the approach computationally viable by using a single random variable to model 28
uncertain parameters. Same authors6 require 25000 samples to determine a sufficiently small 95% confidence
interval.

13 of 30



The above procedure applies to the random variable x. Extensions to random processes

are easily attained. For the random process x(h), generate e samples in the h domain as

follows

hi =
i− 1

e− 1
(hmax − hmin) + hmin, i = 1, 2 . . . e

where hmax and hmin are the bounds of the interval of interest, e.g. hmax = h2 and hmin = h1

in Equation (10). Reliability metrics for the e random variables x(hi), are estimated via the

hybrid approach and then used to form the integrands in Equations (10-11). For the sake of

clarity, we will refer to the e samples in the h domain as the e partitions.

V. Control Synthesis

A. Problem Formulation

The formulation of the control design problem from a reliability perspective is as follows.

For a given set of design requirements, plant model, compensator structure and uncertainty

model we would like to find the compensator parameters for which the resulting probability

of violating the controlled system requirements is minimized. Such requirements combine

stability and performance specifications in time and frequency domains. Notice that this

statement refers to the excursion of the outcomes into the failure domains. Performance

improvements regarding the outcomes within the admissible domains will also be considered.

Such improvements are attained by dynamically shaping the failure domains during the

minimization of the reliability cost metrics. This topic is considered next.

B. Performance Improvements

The reliability metrics in Equations (6-9) are applied using a fixed failure set F . In this

form, a reliability analysis cannot assess the system’s performance in the regions where the

design requirements are satisfied, i.e. the union of the admissible domains A associated

with all the design requirements. Since the portion of the random outcome lying on the

admissible domain A might end up being substantially larger than the portion lying on

the failure domain F , a reliability-based approach with fixed failure envelopes do not have

control over the bulk portion of the PDF, which is the portion that dictates the most likely

overall performance.
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The ideas behind the approach to be proposed will be introduced with an example. Let

x(k) be the stationary RMS value of an error signal. Usually, we would like to find k such

that x is as close as possible to zero. Uncertainty in the plant makes x a random variable.

Let x be the failure envelope associated with a design requirement, i.e. F = {x | x ∈ [x,∞)}.
The minimization of rx(x) leads to a reliability optimal compensator. Suppose there exist

multiple designs leading to rx(x) = 0. These designs however differ in how well the resulting

PDF of x spreads over the admissible domain A = {x | x ∈ [0, x)}. The concentration of

fx(x) about zero is an indicator of the overall performance. Say, k1 leads to rx(x/2) = 0 and

k2 leads to rx(x) = 0. Since none of these two designs violate the design requirement x > x,

a reliability analysis cannot establish that the compensator with parameters k1 has a better

global performance than the one which uses k2.

By minimizing the reliability metrics and simultaneously enlarging the failure domain(s),

the whole random variable/process can be concentrated about regions where an improved

system performance is achieved. This is attained by parameterizing both the failure envelopes

and a failure size penalizing function with an additional design variable. This variable will

be denoted as c. For the RMS example above, the minimization of J = rx(c) + c, where the

design variable is d = [k, c] and c ∈ [0, x], leads to solutions which integrate reliability and

performance considerations on a single formulation. Notice that the value of J for k1 is less

than the one for k2 if c ∈ [x/2, x).

In general, we will refer to the augmented reliability metric as the sum of a reliabil-

ity metric from Section III and a penalizing term. Augmented reliability metrics for the

random variable x and the random process x(h) take the form rx(x(c), x(c)) + γx(c) and

rx(h)(x(h, c), x(h, c))+γx(h)(c) respectively. The penalizing functions γx(c) and γx(h)(c) must

be proportional to the size of the admissible domain A. In addition, they must be built such

that the minimization of the augmented metric does not lead to inadmissible solutions, e.g.

rx = 1 and γx = 0. If r < ε is desired, use a monotonically increasing function satisfying

γ ∈ [0, ε]. For the RMS example above, the minimization of the augmented metric leads to

rx < ε if γx(c) = εc/x for c ∈ [0, x].

C. Synthesis Procedure

A step-by-step procedure to reliability-based control synthesis is presented next.

1. Determine the plant model and the control structure. First principles and classical

deterministic approaches to compensator design can be used. Identify the set of pa-
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rameters that have a strong impact on the plant model. Use sensitivity information

and engineering judgment to select the set of uncertain parameters p. At this stage,

the parametric plant model, e.g. G(p), and the control structure, e.g.K(k), must be

fully determined.

2. Generate the probabilistic parameter model fp(p). Use engineering judgment and

experimental data if available.

3. Determine the number of HSS samples n1 and n2 to be used. Follow the guidelines

provided in Section IV-C. Use Equation (16) to generate the sample sets of fp(p) for

both n1 and n2.

4. Cast the violation of the design requirements in terms of reliability metrics as in Equa-

tions (6-9). Recall that specific realizations for stability, time and frequency require-

ments were provided in Section III-C. Use these metrics to compose the reliability cost

vector r. This step requires determining the failure domain F corresponding to each

component of r.

5. Determine which failure domains will remain fixed during synthesis and which ones

will be dynamically shaped. Let d be the design variable. When the failure domains

are fixed d = k. When failure domains are shapeable d = [kT , cT ]T .

6. Build a penalizing function γ(c) for each of the components of r whose failure domain

is not fixed. Follow the guidelines in Section V-B. Update the components of the

reliability cost vector r by adding the penalizing functions and parameterizing the

failure envelopes.

7. Solve the multi-objective optimization problem

J = min
d
{rTNw} (18)

where N is a diagonal normalization matrix such that the components of rTN are

between zero and one, and w is composed of non-negative weights. The matrix N is

used to facilitate the weighting of the components of r.

Each cost function evaluation used in the search for the optimal reliability-based design

d∗ requires a reliability analysis. This analysis is done by calculating the reliability
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metrics contained in r using the hybrid approach. This task requires forming the

closed-loop Equations (4-14) and performing typical control studies such as finding

closed loop poles, time responses and Bode plots.

During optimization, the following procedure is suggested in order to focus most of the

computational effort toward the assessment of better designs. First, calculate the cost

function using n1 samples for e1 partitions. This implies that only the first step of the

hybrid approach is applied to all reliability metrics. This first assessment, denoted as

A1, should be computationally efficient. If A1 shows that d is a good design relative

to the ones already evaluated by the optimizer, perform the refined assessment A2.

The assessment A2 is carried out by using e2 partitions and a adjustable value for the

reference failure probability ρ. The adjustment of ρ is done to prevent inconsequential

calculations as it was mentioned in Section IV-C. If the particular failure probability

is to be estimated via HSS use n2 samples and Equation (15). If the particular failure

probability is to be estimated via FORM use Equation (17). If A1 indicates that d is

not a good design, A2 is not carried out. This two-fold analysis is applied to all designs

the optimizer evaluates in the search for d∗.

Implementing the dual assessment described above avoids the inconsequential refinement of

the reliability metrics.

D. Optimization and Reliability

Due to the nature of the reliability metrics in r, the cost function J(p,d) might not only

have plateaus, i.e., there could exist a design d and a non-zero perturbation δ such that

J(p,d) = J(p,d + δ), but might also have a discontinuous gradient.

The use of sampling in the estimation of probabilities makes the cost function discon-

tinuous at every point of the design space. Let Ĵ(p,d) be an estimation of the actual cost

J(p,d). For any design d and regardless of the number of samples, there always exists a

perturbation δ such that Ĵ(p,d) = Ĵ(p,d + δ). This situation is aggravated, i.e. bigger

perturbations can be found, when a smaller number of samples is used or when Pf is close

to zero or one.

The discontinuous nature of the estimated value of J must be taken into account when

selecting a numerical optimization method to solve Equation (18). In the examples to follow,

the resulting non-convex non-continuous optimization problem is first solved using Genetic-
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Algorithms (GA) for a fixed number of generations. Since GA is based on a random search,

the twofold procedure described above is particularly convenient. After the fixed number of

generations is reached the GA solution is refined using the Nelder Mead Simplex algorithm,

which is a local non-gradient based search method.

VI. Numerical Examples

The synthesis procedure of Section V-C is applied herein. A textbook satellite attitude

control problem is considered first. Then, disturbance rejection for a flexible beam is pre-

sented. If p ∈ Rm, the parameters used for A1 are n1 = 75m and e1 = 90. For A2 we use

n2 = 500m and e2 = 180. For the sake of comparison, the examples present the solution

to deterministic versions of the problems for which the expected value of p is used. Such

problems and the corresponding solutions are referred to as the nominal ones.

A. Attitude Control

Accurate satellite pointing in the presence of large thermal gradients and mass losses for

uncertain initial conditions is desired. A simple rotational model of two bodies connected

with a flexible boom leads to

J1θ̈1 + b(θ̇1 − θ̇2) + k(θ1 − θ2) = u

J2θ̈2 + b(θ̇2 − θ̇1) + k(θ2 − θ1) = 0

where θ1 and θ2 are the deflection angles, J1 and J2 are moments of inertia, k is the equivalent

stiffness, b = a
√

k/10 is the equivalent damping coefficient and u is the applied torque. The

variable a is used to model the changes in damping caused by thermal variations. We

assume that J2 = 0.1 since mass losses only affect J1. The non-collocated sensor-actuator

pair resulting from using y = θ2 leads to the SISO transfer function for the plant

G(p) =
k + bs

J1J2s4 + b(J1 + J2)s3 + (J1 + J2)ks2
(19)

Variations in the operating conditions and the ignorance on the initial conditions are modeled

using p = [J1, e, k, θ, θ̇]T , where θ = θ1(0) = θ2(0). The following output-feedback control
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structure is assumed

K(k) =
k1 + k2s + k3s

2 + k4s
3

k5 + k6s + k7s2 + k8s3
(20)

The joint PDF that describes the uncertainty in p is given by the independent random

variables listed in Table 1, where U and B refer to Uniform and Beta distributions. Notice

that the Beta distribution has four independent parameters, two of them are the conven-

tional arguments and the other two are the support bounds. Performance requirements

Table 1. Uncertainty model.

J1 ∆J1 = [0.8, 1] fJ1(J1) = U(0.8, 1)

a ∆a = [0.03, 0.2] fa(a) = B(0.3, 0.2)

k ∆k = [0.09, 0.4] fk(k) = B(5, 5)

θ ∆θ = [−π/2, π/2] fθ(θ) = B(5.2, 5.2)

θ̇ ∆θ̇ = (−15, 15) fθ̇(θ̇) = B(2.5, 2.5)

on the system’s closed-loop stability, settling time, over-shoot, and control usage for a

step response and on the magnitude of the loop transfer function lead to r = [rλ(λ),

ry(t)(y(t), y(t)), ru(t)(u, u), rq(ω)(q(ω)), rq(ω)(q(ω))]T , where q(ω) = |GK| is the loop gain.

The failure envelopes to be used are λ = 0; y(t) = −1.25H(t) + 2.2H(t− 70) for t ∈ [0, 80],

where H is the Heaviside function; y(t) = 1.25H(t)−0.2H(t−70) for t ∈ [0, 80]; u(t) = −0.5

for t ∈ [0, 25]; u(t) = 0.5 for t ∈ [0, 25]; q(ω) = 0.75/ω for ω ∈ [10−6, 0.2] and q(ω) = 1 for

ω ∈ [1, 102]. These failure domains lead to the normalization matrix N = diag{[1, 80, 25, 0.2−
10−6, 102 − 1]}. Note that overshoot and settling time constrains are integrated using y(t).

Fixed failure domains are assumed. This leads to d = [k1, k2, k3, k4, k5, k6, k7, k8]
T . The solu-

tion of the optimization problem in Equation (18) requires calculating r for multiple control

designs. Recall that for each design, the hybrid approach of Section V-C is used to generate

the coarse assessment A1 and eventually the refined assessment A2. For A1, use n1 = 375

samples, e1 = 90 partitions and Equation (15). If A2 is required, use e2 = 180 partitions,

the reference failure probability ρ = 0.01 and the results of A1. For the failure probabilities

to be estimated via HSS use n2 = 2500 samples. In this example, FORM is used to calculate

rλ(0) for ρ = 0.01. Before presenting the results from the above procedure, the deterministic

problem based on the expected value of the parameter is considered.
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1. Nominal Compensator

A baseline compensator for the nominal plant is designed by standard pole placement tech-

niques such that large stability margins are attained. This practice results in the nomi-

nal compensator parameters k = 106[0.0108,−0.3271, 0.1192, 0.0092, 1.8835, 2.1305, 2.2276,

0.9308]T . A reliability analysis of the nominal compensator using the probabilistic uncer-

tainty prescribed by fp(p) leads to rTN = [0, 0.2485, 0.227, 7.08 × 10−5, 0]. This vector

indicates that the closed-loop system is robustly stable, i.e. rλ(0) = 0, but the time re-

sponses are unsatisfactory. The CDF of λ as well as the time evolutions of the output and

the control signals are shown in Figures 4-6. The sudden variation in the slope of the CDF of

Figure 4 is the result of a change in the closed-loop pole that determines λ. The considerable

disparity between λ(E[p]) and E[λ(p)] shows that the nominal problem is not a meaningful

representative of the probabilistic behavior. Figures 5 and 6 show the time evolution of the

random signals by indicating the 1, 10, 20, 30, 40, 50, 60, 70, 80, 90 and 99 percentiles.

In Figures 5 and 6, the percentiles, the nominal fields and the failure envelopes are shown.

Dotted lines are used to indicate the the failure envelopes. It is interesting to see how the

PDFs expand, e.g. Figure 6 at 2.5 and 8 seconds, and contract, e.g. Figure 6 at 4 and

16 seconds, in a oscillatory manner. This information can be used to determine the time

periods when the effects of uncertainty are more noticeable.

Figure 4. λ for the nominal compensator.
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Figure 5. y(t) for the nominal compensator. A zoom is shown below.

Figure 6. u(t) for the nominal compensator.

2. Reliability-based compensator

The synthesis procedure listed above leads to d∗ = 106[0.0405, 0.1267, 0.2422, 0.0320, 0.5244,

1.0057, 1.2263, 0.6560]T and rTN = [3.13× 10−4, 0.0521, 0.0918, 1.33× 10−4, 0] for which the

weighting vector w = [500, 1, 1, 1, 1]T was used. A probabilistic analysis of this compensator
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leads to Figures 7-10. Notice that despite of the increased variability of the dominant closed-

loop poles resulting from this compensator (∆λ in Figure 7 is about three times larger than

the one shown in Figure 4), stability is compromised with only 3.13 × 10−4 probability.

Notice that a substantial improvement in the performance is achieved by trading-off a very

small margin of the probability of instability. This improvement can be seen after comparing

Figures 5-6 with 8-9. Better robust stability characteristics could be attained by increasing

the weight in w for the corresponding component of r. Recall that reaching zero probability

of instability might be unfeasible. From Figure 9 we see that for all possible parameter

values and initial conditions the process u(t) stays between the ±0.5 range with more than

0.8 probability after 6 seconds. Figure 10 shows that uncertainty mostly affects the damping

and the location of the resonant frequency. Violations of the low frequency requirement are

completely avoided. Overall, the performance resulting from d∗ is substantially better than

the one resulting from k.

During optimization, 157 random variables were used to evaluate c for the coarse assess-

ment A1. Such task takes 23.6 seconds when performed on a Pentium III 1795MHz with

512MB of RAM. Notice that the CPU time associated with A2 depends on the initial con-

ditions used to find the MPPs. For this assessment, HSS was used for 628 random variables

and the hybrid approach was used for robust stability. This task took 102 seconds.

Figure 7. λ for the reliability-based optimal compensator.
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Figure 8. y(t) for the reliability-based optimal compensator. A zoom is shown below.

Figure 9. u(t) for the reliability-based optimal compensator.

B. Disturbance Rejection for a Flexible Beam

The second example will focus on a reliability-based disturbance rejection solution for a

flexible beam test article with both physical and modal parameter uncertainties. The system,

displayed in Figure 11, consists of a very flexible thin aluminum blade, approximately one-
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Figure 10. Bode plot of the loop gain for the reliability-based optimal compensator.

meter long, attached at its base to a hub motor. The hub motor is the control actuator for

the system. At the tip of the beam, there is a reaction wheel that serves as a disturbance

generator. The test article has nine sensors that may be used in any combination for either

feedback or performance output monitoring. The finite element method is used to model

this system by utilizing Euler-Bernoulli planar beam elements. A complete description of

the flexible beam test article19 is available.

For this paper we study a SISO model of the system in which the input u is the hub motor

torque and the measured output y is the tip velocity. The tip reaction wheel disturbance

is modeled by passing a Gaussian white noise process through a second-order linear low-

pass filter, with parameters ζ = 0.8 and ωn = 200π rad/s. The first five modes of the

elastic structure are used to build a state space realization of the plant. This, in addition

to the disturbance model leads to a open-loop system where x ∈ R12, u ∈ R and y ∈ R.

The uncertain parameters are the Young’s Modulus E (Pa), the density ρ (Kg/m3) and the

damping ratios of the retained vibration modes. This set leads to p = [E, ρ, ξ1, ξ2, ξ3, ξ4, ξ5]
T ,

whose components are assumed independent. The corresponding PDFs are given in Table

2. The mean value of the parameters E[p] is set to coincide with the parameters in the

finite element model. These mean values were chosen to match experimental data, while

the supports of the distributions were set according to reasonable ranges of variation. The

shapes of the PDFs were arbitrarily set. Performance requirements on stability and the
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Figure 11. Flexible beam test article.

Table 2. Uncertainty model.

E ∆E = 1010[5.226, 7.839] fE(E) = B(5, 5)

ρ ∆ρ = [2280, 3420] fρ(ρ) = B(3, 3)

ξ1 ∆ξ1 = [0.08, 0.12] fξ1(ξ1) = B(2, 2)

ξ2 ∆ξ2 = [0.0252, 0.0378] fξ2(ξ2) = B(2, 2)

ξ3 ∆ξ3 = [0.02, 0.03] fξ3(ξ3) = B(2, 2)

ξ4 ∆ξ4 = [0.0304, 0.0456] fξ4(ξ4) = B(2, 2)

ξ5 ∆ξ3 = [0.02, 0.03] fξ5(ξ5) = B(2, 2)

output RMS lead to r = [rλ(0), ryRMS(yRMS)]T . Two control design problems are considered

in this example, output feedback and full-state feedback with a full-order observer.

1. Output Feedback

First, a third-order compensator with the same structure of Equation (20) is considered. A

baseline compensator is designed such that the tip velocity RMS for the nominal plant is

minimized. This results in yRMS = 0.025 m/s and k = [−0.0052,−0.2589,−16.1462,−5.007,

0.0004, 0.0009, 0.2519, 0.0598]T . A reliability analysis of the nominal compensator for the

uncertainty model in Table 2 leads to rλ(0) = 0.068 and ryRMS(0.05) = 0.010.
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For the reliability based-design, a shapeable failure domain for the RMS component of r

is assumed. This leads to the cost vector r = [rλ(0), ryRMS(c) + γyRMS]T , where c ∈ [0, 0.05]

and γyRMS = c. The corresponding design variable is d = [kT , c]T and the normaliza-

tion matrix is N = diag{[1, 1.05]}. The weighting vector w = [20, 1]T leads to d∗ =

[−0.0072,−0.3506,−22.2811, 0.0145, 0.0006, 0.0019, 0.3761, 2.8 × 10−8, 0.0305]T , rλ(0) = 0

and ryRMS(0.0305) = 4.33× 10−3. A probabilistic analysis of d∗ leads to Figures 12-13. Fig-

ure 12 shows that the the whole random variable yRMS is moved towards zero, by virtue of

the non-fixed failure envelope. Figure 13 shows Bode magnitude plots of the disturbance to

output transfer function, namely Tzy, Notice that differences in the low-frequency portion of

the diagram have a bigger impact on the RMS value. In this Figure, Bode magnitude plots

for the nominal compensator and the reliability optimal compensator are shown. The 1, 10,

20, 30, 40, 50, 60, 70, 80, 90 and 99 percentiles and the nominal fields are superimposed.

Figure 12. Tip velocity RMS for the output feedback solution.

2. Full-State Feedback and Full-Order Estimation

Second, full-state feedback and a full-order observer define the structure of the compensator is

considered. Hence, the feedback gain G, the observer gain L and the RMS failure envelope c

are the design variables. Recall that the separation principle does not hold due to uncertainty

in the plant. The resulting closed-loop dynamics is given by Equations (3) and (4). Notice
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Figure 13. Bode diagrams of Tzy for output feedback.

that although the observer is deterministic, all the closed-loop poles are random. As before,

a baseline compensator for the nominal plant is first designed by minimizing the RMS value,

which results in yRMS = 0.011 m/s. Using yRMS = 0.05 m/s, this compensator leads to

rλ(0) = 0.232 and ryRMS(0.05) = 0.002.

The reliability-based synthesis approach for the same setup used in the output feedback

example leads to rλ(0) = 0 and ryRMS(0.0139) = 3.6 × 10−3. Due to the large number of

elements in d∗, only c = 0.0139 m/s is provided. The probabilistic analysis of d∗ leads to

Figures 14-15. Compared with Figure 12, Figure 14 shows considerably more variability in

the Bode magnitude plot as well as a significant reduction in the damping of the first mode.

Since there is no conservatism in the selection of the nominal plant, i.e. G(E[p]) is not the

most difficult plant to control, the optimal deterministic values for the nominal plant don’t

have to bound the resulting supports, e.g. values in ∆yRMS may be less than yRMS = 0.011

m/s.

It is interesting to notice that even though d∗ leads to a robustly stable closed-loop

system in Equation (3), the full-state feedback subsystem Ã1,1 and the full-order observer

subsystem Ã2,2 have a non-zero probability of instability. This indicates that the Separation

Principle artificially reduces the design space. While robust stability was achieved in both

output feedback and full-state feedback solutions, the latter led to a better performance.
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Figure 14. Tip velocity RMS for the full-state feedback solution.

Figure 15. Bode diagrams of Tzy for full-state feedback for full-order observer.

VII. Conclusions

This paper proposes a reliability-based control synthesis method for systems with proba-

bilistic uncertainty. Control synthesis is performed by solving a multi-objective optimization

problem where the probability of violating stability and performance requirements is min-
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imized while the failure domains are simultaneously enlarged. Including dynamically sha-

peable failure domains leads to improvements in the global controlled system performance

that could not be pursued by a reliability formulation with fixed failure domains. In addi-

tion, the integrated use of asymptotic approximations and deterministic sampling in a hybrid

approach proved to considerably relax the high computational demands of the synthesis al-

gorithm. Examples of attitude control of a simple satellite model and disturbance rejection

of a flexible beam are used to demonstrate the method.
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